
Capstone Final Report - Fall 2020

Reinforcement Learning for Trading

Mariem Ayadi,
Shreyas Saiprasad Jadhav,

Benjamin Weiss Livingston,
Amogh Mishra,

& Kevin Womack

mentored by
Naftali Cohen & Srijan Sood

JP Morgan AI Research

supervised by
Adam Kelleher

Preface

The purpose of this report is summarize the final results of the
group’s Capstone project; it will synthesize the statistical, compu-
tational, social, and ethical challenges involved in constructing an
artificially-intelligent stock trader using classic Q-Learning methods
from Reinforcement Learning.

1 Introduction

1.1 Background & Motivation

1.1.1 Reinforcement Learning

Reinforcement Learning differs significantly from Supervised Learning and Unsupervised
Learning, and is probably closer to a more classical conception of artificial intelligence. In Re-
inforcement Learning, the algorithm acts much like a human does from birth: it tries different
actions out, makes mistakes, sees what works and does not work, and then adjusts its actions
accordingly.

In Reinforcement Learning, we call our learner an agent. In each time step, this agent chooses
an action and is rendered a reward. The agent’s goal is simple: to maximize its rewards over
time by optimizing its actions given its state.

Imagine this as an automated vacuum cleaner trying to learn the most efficient route. Success-
fully picking up a mess could be considered worthy of a reward for the vacuum, whereas running
into a wall could be considered worthy of a penalty (or more specifically, a negative reward). Run-
ning out of battery before returning to the dock, getting stuck in a corner, or getting attacked
by a pet could all be considered worthy of an extremely large negative reward; these would help
the agent learn not to make the same mistakes again.

The secret sauce behind these decisions is the state the agent finds itself in. The agent does
not treat every situation the same - it makes decisions based on a quantitative summary of its
surroundings. For the vacuum, this could be several things: how far it is from the wall, how much
battery it has left, how many feet away the pet is, how full its bag is, summarized sensory data
from a camera, and so forth.

The agent’s goal is to ultimately develop an optimal policy: essentially, figuring out which
action makes sense in each state. This is accomplished through a process of exploration vs. ex-
ploitation.

In exploration, the agent randomly tries out different actions, even if it does not believe them
to be optimal. This can be thought of as childhood: the best way for humans to learn what works
well is to make mistakes and try out different things. The agent learns the same way. Without
giving different routes a try, the vacuum would be stuck making a random guess of the best route.

In exploitation, the agent follows its optimal policy. It takes what it believes to be the optimal
action in the given state. Think of exploitation as imagined adulthood: we have learned what
we believe is correct, and we do it. In the vacuum’s case, it follows what it believes is the best
route based on its surroundings, however optimal that route is, and stops trying new strategies
for navigating the house.

However, exploitation is not necessarily ideal. Perhaps what the agent believes to be optimal
is not optimal; after all, whether you are a 10-year-old, a 65-year-old, a one-day-old automatic
vacuum, or a three-year-old automatic vacuum, there is usually more learning to do. Your con-
ception of the world around you may not be entirely correct, or the world around you may change
over time.

This is where the challenge of exploration vs. exploitation comes in. Ideally, an agent would
explore until it learns optimal policies for the various states it can find itself in, and then it
exploits its knowledge. However, this is an imperfect process that requires careful management.

2

1.1.2 Why Reinforcement Learning Is Ideal For An Investment Bank (JP Morgan)

Generally speaking, a financial institution’s algorithmic trading approaches would ideally be ex-
plainable, transparent, and controllable. It is helpful to avoid instituting a black box algorithm
- one that does not meet these requirements - for several reasons.

First of all, utilizing an algorithm that cannot be explained or scrutinized leaves a financial
institution unable to ensure it does not conduct illegal activity. Insider trading and market
manipulation (such as front running) are serious prohibitions in a trading environment, and a
complex algorithm that acts of its own accord could risk violating these rules, depending on what
information it is considering. It could also take illogical actions that seem to make sense based on
results, but are actually based on a poor interpretation of the data and are not particularly robust.

With no understanding of the algorithm’s inner workings, JP Morgan might be unable to con-
clusively state that it is operating within the rules, or justify to stakeholders that it is truly
trading logically. Many institutions use algorithmic trading approaches that may not quite meet
these requirements, but the design of Reinforcement Learning makes it uniquely poised to achieve
high performance while attaining these ideal characteristics.

Reinforcement Learning maintains a simple formulation of the trading problem, and this per-
mits the algorithm to maintain a distinct sense of transparency. The state of the market can be
quantified in a direct, simple manner (although the design decisions in how to distill the state
of the market through indicators can be tricky), the actions are as simple as buying and selling
certain amounts of various securities, and the reward can be as simple as how much money is
being made and how volatile (or more specifically, how non-volatile) a portfolio is.

Thus, Reinforcement Learning allows for a simple-yet-powerful formulation of the trading prob-
lem that avoids creating a black box, making it ideal for a financial institution that requires
transparency.

One other practical consideration is that the state of the market is not necessarily independent
of JP Morgan’s actions. JP Morgan is a large financial institution that can make major waves in
a market, and thus any algorithm considered must allow us to account for the potential Market
Impact of any moves that JP Morgan makes.

Reinforcement Learning is ideal here as well, as it considers both current and future conse-
quences of the agent’s actions, and does not make its decisions rigidly in a vacuum. More gen-
erally speaking, it can dynamically adapt to a changing environment in a way that Supervised
Learning and Unsupervised Learning would struggle to - and this makes it an ideal candidate for
the trading environment.

Many of these considerations will be discussed further in the discussion of ethics later in this
report. The general idea here is that a good stock trading strategy should be explicit and
manageable. "Buy low, sell high" is the classic solution. We will explore more similar stock
trading strategies in our exploration of benchmarks later in this report, but any stock trading
strategy JP Morgan explores would ideally follow this general blueprint: intelligent but eminently
explicit. Thus, Reinforcement Learning is an ideal candidate here.

1.1.3 Q-Learning

Q-Learning will serve as our chosen Reinforcement Learning algorithm. Q-Learning is a model-
free, off-policy RL algorithm. Many Reinforcement Learning algorithms aim to learn a policy

3

directly, and/or directly predict how the environment will shift. Q-Learning does neither of these
things: it simply estimates the impact of them.

Q-Learning models the expected reward for each action in a given state, by balancing cur-
rent reward and expected future reward (which is done using the Bellman Equation, shared
later). This is a simple, beautiful alternative to trying to build a complex understanding of the
environment. Rather than going to the trouble of modeling causes, the agent focuses on outcomes.

Think of this as the robot vacuum trying to avoid an attack by the pet. Q-Learning does not
require any understanding of where the pet goes at what time. Rather, if the vacuum is consis-
tently attacked by the pet when trying to clean the bedroom at 3 p.m., it would (theoretically)
learn something much simpler such as "turning left at 3 p.m. is a bad idea". This often makes
for a much more parsimonious approach.

In classic, simple Q-Learning (what we generally refer to as "Q-Learning" in the remainder of
this report), the state and action space is discrete. For the vacuum, a specific Q-Learning state
would be something such as "it is between 3 and 6 p.m., I am in the living room, and my bag is
50-75% full", and the action space could be "turn left, turn right, go straight, or turn around".

The final result is a Q-Table, where the rows are states and the columns are actions, and each
cell contains a Q-Value. Each Q-Value is the estimated reward for that action in the given state.
If we are exploiting in the given time step, we select the optimal action by choosing the largest
value in the row - in other words, the action that yields the highest expected reward.

1.1.4 Deep Q Networks

Often times, simple Q-Learning is too simple for a given situation. Perhaps we want to consider
our current state more precisely - in the robotic vacuum example, the vacuum may want to know
exactly how much battery it has left, rather than a vague quantization of said value.

This creates a challenge, though. Suddenly, the state space becomes infinite, so the agent
cannot learn an optimal policy for each state; it must approximate it. This is where Deep Q
Networks (DQN) comes into play. DQN approximates the values of a Q-table using a Neural
Network.

Examples of this in practice have been seen in the works of DeepMind and OpenAI, where it
has been shown that Deep-RL has the ability to outperform humans in games. This approach
is particularly useful and applicable when the state-action pairs are continuous, such as in self-
driving cars.

In order to use DQN in the setting of this project, the input would be the state at the current
time step and the output would be the approximate Q-Values of the allowed actions. DQN plays
a pivotal role in our problem definition, since for a given time t, we may want to incorporate
more variance in our states through continuous (rather than discrete) states and experiment with
DQN to produce superior results.

1.2 Problem Statement

Our goal is to use Q-Learning and DQN to allow an artificially intelligent stock trader to navigate
the market. Specifically, our agent will manage a portfolio containing two assets: JPM stock and
cash. On any given day, it will be allowed to choose between maintaining its current split of cash

4

and stock, buying more stock, or selling stock.

Our goal will be to build Q-Learning and DQN agents that maximize their returns in the
market while also mitigating volatility (although admittedly, the latter did not factor into the
agent’s training, so our ability to achieve low volatility will be limited in this experiment). We will
measure their success against very simple, run-of-the-mill trading strategies. Should our strate-
gies develop a healthy mix of improved returns and/or mitigated volatility over these baseline
strategies, we will consider them a success.

This is admittedly a challeging task - "beating the market" is notoriously difficult. It is often
simply a product of luck more than skill, and it is challenging to define exactly what success
is. With this in mind, we will not view success and failure as binary; we will focus more on
methodology, explainability, and insight than on raw results.

1.3 Existing Work & Literature Review

Admittedly, building a basic Q-Learning trading framework from scratch is a highly-involved
process. This being the case, simply getting to the point of creating a functioning, explainable
framework for Q-Learning and DQN encompassed the bulk of the project given the timetable
available. This literature review provides a "horizon" to look towards: a few papers that pro-
vide a roadmap for what is possible to accomplish in trading with Reinforcement Learning given
enough time and resources, and what may not be.

Théate and Ernst [10] laid out a framework for DQN for trading, built around the Sharpe
Ratio (to be discussed later - essentially returns divided by volatility). In this experiment, they
found that DQN did not perform demonstrably better than simply buying stock and holding it
- which raises the question of whether the reward-maximization problem can be reduced much
further than "stock is generally worth more than money, so buy stock". This little issue will rear
its ugly head later again in this report, and it’s a decidedly nontrivial potential limitation of the
Reinforcement Learning solution.

Meng and Khushi [7] more recently completed a literature review that found that Reinforcement
Learning showed promise in the stock trading arena, but it still struggled to adapt to the realities
of the market: commissions / transaction costs, volatility, changes in the market between the
training and testing periods, etc. This also foreshadows some challenges we will see, and further
explains why our process is more focused on methodology and explanation than purely generating
strong results.

A more recent attempt at a robust framework was attempted by Ponomarev, Oseledets, and
Cichocki [8], who used an Actor-Critic method (another Reinforcement Learning approach) cou-
pled with Recurrent Neural Networks (RNN) utilizing Long Short-Term Memory (LSTM). This
is well beyond the scope of this project, which will consider methods no more complex than
simple DQN. However, that paper leaves out a critical piece that our report will consider: direct
numerical comparison with benchmark strategies of simple stock trading. This is a crucial aspect
of evaluating the marginal benefit of Reinforcement Learning.

This literature review can be summarized as follows: profitability is not terribly difficult to
achieve, hence the challenge is more complex than making money. After all, stock is generally
more profitable than cash, therefore buying as much stock as possible will result in a profit. The
real question is if our algorithms can make more money than simple stock trading strategies - or
at least make a comparable amount of money while mitigating portfolio volatility. This review
suggests that this may be quite a challenge.

5

1.4 Overall Approach

The team began by collecting the data, constructing code to evaluate benchmark strategies and
metrics, and then began building the algorithms. An initial framework was laid out, consisting of
an automated visualization / metrics pipeline and a simple API for a stock trading strategy. This
created a foundation for measuring the success of the team’s Reinforcement Learning strategies.

The next challenge was to select an RL algorithm. This involved mulitiple weeks of research
and consultation with JP Morgan. Q-Learning, SARSA, and Policy Gradients were all strongly
considered, but Q-Learning was chosen due to its popularity and simplicity.

Following this groundwork, this project required an intense design process. Selecting indicators
for states and metrics was a non-trivial process that required weeks of research, experimentation,
coding, and collaboration. Admittedly, this process has been iterative: the group made significant
progress, but there is always room for further refinement.

Once the exploratory data analysis framework was complete, the team moved into modeling.
This was an immensely challenging process, because success was difficult to define. Additional
benchmarks were added (namely the "Buy Always" strategy), and new questions arose.

Was it acceptable to have a Q-Learner that bought nearly all the time (since JPM stock is
generally a higher-value asset than cash), or is it optimal to have a more balanced set of actions?
How do we quantitatively separate a learner that is "lucky" from a learner that is intelligent?
Should rewards be rendered as holdings appreciate, or only once the held stock is sold, given that
both are fair approximations of the real world?

Admittedly, many of these questions stayed open, and became as much a part of the research
as evaluating the results themselves. Many of them will be addressed in the sections that follow.
Continual collaborative improvement of the algorithm was the backbone of the team’s work in
the later phases of the project. This included the extension of simple Q-Learning to DQN that
took place in the final few weeks.

As this improvement took place, the team also placed a heightened focus on explainability.
The question was not simply how the RL algorithms were performing, but why they did what
they did. Could we see patterns in the algorithm’s actions, and perhaps discern an artificially
intelligent trading strategy from it? This process produced several fascinating visualizations: Q-
Table heatmaps, state transition matrices, views of actions over time, and more.

This work continued until the final hours of the project as this report was authored, and is
the culmination of copious research, collaboration, imagination, and persistence. There is always
room for improvement; this work methodically scratches the surface of what is possible in stock
trading with RL.

2 Data & Processing

2.1 Data

The underlying data for this project was extremely simple: it was nothing more than the daily
stock price for our chosen stock to manage, JPM.

To be more specific, JPM’s daily Adjusted Closing Price for each trading day was considered.
This is a version of a stock price that accounts for corporate actions such as splits and dividends,

6

providing more stability over time in price movements than the raw closing price.

Date JPM Adj. Close
Feb 1, 2018 $107.47
Feb 2, 2018 $105.09
Feb 5, 2018 $100.05
Feb 6, 2018 $103.09
Feb 7, 2018 $103.79
Feb 8, 2018 $99.20
Feb 9, 2018 $101.19
Feb 12, 2018 $102.75
Feb 13, 2018 $103.38
Feb 14, 2018 $105.78
Feb 15, 2018 $106.22
Feb 16, 2018 $105.45

This data was accessed using the Yahoo Finance’s Python API, primarily through the package
yfinance. While this data is quite simple, the calculations done with it were complex, and will be
detailed throughout this report.

Our Reinforcement Learning algorithms were built by training them in an in-sample period,
and then testing the trained algorithms in an out-of-sample period. The in-sample (training)
period was defined as every trading day from 2007 to 2016, inclusive. The out-of-sample (test-
ing/evaluation) period was defined as every trading day from 2017 to 2019, inclusive.

2.2 Preprocessing

Preprocessing was not a major consideration for our pipeline. A large amount of processing was
done inside the algorithm to generate daily states (e.g. calculating each day’s return and Bollinger
Band Percent, among other things), but this was done in parallel to training and testing. No
further alterations were made to the aforementioned adjusted closing prices.

However, this is certainly not to say that several daily indicators were not considered. Rather,
all states, indicators, and metrics were calculated directly from the daily stock price.

3 Analytical Methods

3.1 Methodology

To begin this section, we will outline the "rules of the game": the guidelines for how an agent is
allowed to sell or trade stock. This framework is completely implementation-agnostic; it simply
lays out the trading environment.

To begin the testing (out-of-sample) period of 2017 to 2019, the stock trading "agent" (de-
ploying its chosen strategy) will be given a portfolio worth $100,000 on the first day of 2017. All
strategies start with 0 shares and $100,000 in cash. Hold, on the other hand, only holds stock and
never touches cash (which, as we will discuss in our results, gives it a somewhat unfair advantage
that should be noted).

On a given trading day, the agent will be allowed to take one of three actions: buy, sell, or
hold. If the agent chooses hold, nothing changes. If the agent chooses buy, it will buy a set
number of shares. If the agent chooses sell, it will sell that same set number of shares. The
number of shares the agent can buy or sell on a given trading day is set to a constant amount of
shares (in our experiment, this number of shares was 30).

7

It should be noted that buy and sell actions were only permitted if an agent had enough stock
to sell or cash to buy. If the agent opted to sell but had fewer than 30 shares, or opted to buy
but did not have enough money to purchase 30 shares of stock, it was forced to hold.

3.2 Benchmarks

The success of the team’s Reinforcement Learning strategies were measured against five simple
stock trading strategies, which provide a baseline level of performance as a gauge for evaluating
success.

It is important to note that these methods are not trained, since they employ simple strategies
that are not tuned using machine learning. Unlike the Reinforcement Learning algorithms, these
strategies involve no information from the in-sample period (2007 to 2016) - they simply carry out
trades in the out-of-sample period (2017 to 2019) according to their individual simple strategies.

• Hold Consistently: do nothing except hold stock (and zero cash) for the entire trading
period, regardless of what happens.

• Random Action: randomly choose between ‘buy’, ‘sell’ and ‘hold’.

• Rule-based Action: the agent chooses ‘sell’ if yesterday’s return was positive, ‘buy’ if
yesterday’s return was negative, and ‘hold’ if the stock price saw no change on the previous
trading day.

• Ordinary Least Squares (OLS): use simple linear regression to predict the upcoming
day’s return, using the last five trading days as data; ‘sell’ if the predicted return is negative,
‘buy’ if it is positive, and ‘hold’ if neither.

• Buy Always: buy stock every day as long as there is still money left to spend. This
benchmark is designed based off the well-known principle that, in the long-term, stock is
generally worth more than cash, meaning any intelligent stock trading strategy should yield
better results than simply buying as much stock as possible (and should not be labeled a
success simply because it buys more stock than cash).

It should be noted that the "Hold" benchmark strategy technically violated the rules of the
game as we outlined them earlier, so its performance should be analyzed with a grain of salt.

3.3 Metrics

3.3.1 Goals of Metrics

The relative success of the strategies (both Reinforcement Learning and benchmarks) will be
measured based on a wide range of analyses. The goal of the metrics is simple: to measure how
well the trading strategy generates improved returns while also mitigating volatility.

If a Reinforcement Learning trading strategy generates returns that are gauged to be no better
than the baselines, it is fair to question its worth. Similarly, if it generates improved returns,
but with an in-kind increase in volatility, it is reasonable to doubt whether or not the increased
returns are worthwhile.

We will use our metrics to determine the relative returns, relative volatility, and the relative
volatility-normalized returns of each strategy. The final item will use classic indicators that
implicitly weigh the returns of a strategy’s managed portfolio against that portfolio’s volatility.

8

3.3.2 Metric Definitions

For the purposes of this project, a stock’s return can be calculated as follows:

Daily Return[t] =
Portfolio V alue[t]

Portfolio V alue[t− 1]
− 1

With that in mind, the metrics and associated hypothesis tests are as follows:

1. Buy, Sell, and Hold percentages: the percentage of the time each action was taken
under the strategy

2. Mean Daily Return: the arithmetic average of multiplicative daily returns; this is ex-
pressed as a percentage for readability purposes

3. Volatility (Standard Deviation of Daily Return): captures the volatility of a stock
(this is calculated on the raw return, not the percentage)

4. Information Ratio: measures and compares the active return of an investment compared
to a benchmark index relative to the volatility of the active return defined as follows: IR =
(Portfolio Return−Benchmark Return)/Tracking Error, where the benchmark return
is the S&P 500, and tracking error is defined as the standard deviation of the difference
between the stock’s daily return and the benchmark’s daily return. We note that these tend
to be negative, due to the fact that they are measured against full investment in the S&P
500, which generally posts a higher return than a more even cash-stock split in the cases
of most stocks (which is our default for testing/evaluation). What matters for now is the
relative value of these IRs - not their raw values.

5. Sharpe Ratio: measures the performance of an investment compared to a risk-free asset,
after adjusting for its risk defined as: Sharpe Ratio = (Rp − Rf)/σ where Rf is the
risk-free return, defined here as the U.S. five-year treasury rate for our problem. Here, the
denominator is defined as the standard deviation of the difference between the stock’s daily
return and the risk-free asset’s daily return.

6. Average Return After Buying, Selling, and Holding: a measure of the strategy’s sit-
uational effectiveness, examining mean percent return the day following each strategy being
deployed; note that this only measures immediate reward and not future reward, so it is of
limited utility

7. T-test for Significance in Difference of Returns: in our comparison, we perform one-
sided t-tests used to determine if the mean of the daily returns from two separate trading
strategies or assets are significantly different statistically (we will assume equal variances
for simplicity, which functionally did not have much impact on these tests). We do this
between each strategy and the benchmark return (the S&P 500) defined above. The result
consists of two portions: (1) a p-value, which if less than .05, would traditionally lead to
the assumption that the difference is significant, and (2) a symbol to denote if the stock
performs better than the benchmark return (>) or worse (<). Differences found to be
significant are noted with a ‘*’.

8. Levene Test for Significance in Difference of Volatility: used to determine if the volatil-
ities in the returns of the trading strategy and the benchmark return (the S&P 500) are
significantly different. The result and p-value are reported in a similar fashion to the t-tests.

In addition to these methods, we will present visualizations that track the portfolio’s returns,
daily actions, and chosen proportions of stock versus cash over time, as well as the final appear-
ance of the stock’s Q-Table.

9

https://en.wikipedia.org/wiki/Active_return
https://en.wikipedia.org/wiki/Risk-free_interest_rate
https://en.wikipedia.org/wiki/Risk

While these metrics are valuable, often times a common-sense check of the visualizations is
equally as valuable. These alternative evaluations are critical. For instance, as mentioned nu-
merous times thus far, many stocks (such as JPM in our out-of-sample period) are worth more
on average than cash. Ergo, a strategy that buys stock wantonly until it runs out of money
will inherently be more effective than most more balanced strategies. However, this does not
demonstrate any real sense of learning, intelligence, or reacting to surroundings, even if it beats
multiple benchmark strategies in every single metric.

With this in mind, it is important to seek out a Reinforcement Learning strategy that both
performs well in the above metrics and testing, and exhibits a pattern of actions that demonstrate
an intelligent, measured, reactive strategy. Granted, this is a steep goal, essentially akin to asking
a stock trader to be successful without being lucky, heedless, or simplistic. We acknowledge that
this is a lofty expectation that may not be realistic, and that a successful strategy should exhibit
some of these characteristics - not necessarily all of them entirely.

3.4 Outlining the Q-Learner

3.4.1 State Space

The simple Q-Learner’s state space was comprised of two simple elements, namely:

• The ratio of the chosen stock’s Adjusted Close to its 3-day Simple Moving Average a.k.a.
its SMA Ratio

• Bollinger Band Percent – an indicator for quantifying the value of the stock asset relative
to the upper and lower Bollinger Bands

%B = (Price− LowerBand)/(UpperBand− LowerBand)

• Cash Percentage - an indicator that represents the percentage of the cash held to the
total portfolio value at each time step.

At each time step,

%Cash = Cash/(Cash+ Shares ∗ CurrentAdjustedClosePrice)

Per the suggestion of the team mentors, the team also explored an indicator for volatility called
the Average True Range (ATR). This metric is calculated by taking the maximum of:

(Current day′s high− the current day′s low)

(Current day′s high− the previous day′s close)

(Previous day′s close− the current day′s low)

...and creating a 14-day exponential moving average from this value. A larger ATR indicates
higher trading ranges and therefore increased volatility. Low readings from ATR are generally
consistent with periods of quiet or uneventful trading.

The team also explored utilizing a metric known as Market Relative Daily Return, a
measure of the stock asset’s return relative to the S&P 500. The idea is that if the asset’s
return is not better than the general market performance, then one may conclude that there is
no particular advantage to owning shares of this stock. This indicator is defined as:

%MRDR =
(Day N Stock Adj Close) / (Day N − 1 Stock Adj Close)

(Day N S&P 500Adj Close) / (Day N − 1 S&P 500Adj Close)

10

https://www.investopedia.com/terms/b/bollingerbands.asp

While the ATR and MRDR indicators were explored, implemented, and lightly tested in the
weeks leading up to this report, the team opted not to fully integrate them into the state space
for the agent.

Each of these indicators was arranged into a certain number of discrete quantiles based on pat-
terns the in-sample (training) period (the number of quantiles varied by indicator). The borders
of these quantiles for some states will be visible in the Q-Table visualizations shared later in this
report.

A precise "state" was defined as the current mix of quantiles: a specific state would be, say,
currently being in the third quantile of SMA Ratio and the fourth quantile of Bollinger Band
Percentage based on the stock’s recent adjusted close prices.

3.4.2 Action Space

The definition of the simple Q-Learner’s action space was much simpler. As mentioned earlier,
the agent can choose between buy, sell, and hold. The agent aimed to learn which of these
three actions was optimal in a given state (i.e. it learned which of these three actions yields the
highest expected reward given the mix of quantiles the agent finds itself in).

3.4.3 Rewards

To keep the concept simple, the reward was the change in the portfolio value between two con-
secutive time steps depending on the action taken by the agent.

When buying or selling, the agent transacts a fixed amount of shares (30). The reward for a
specific trading day (i.e. a time step) was defined as the following based on the different actions.

Shares traded per action : 30

Action: BUY
Cash[t+ 1] = Cash[t] − 30 ∗ AdjustedClose[t]

Shares[t+ 1] = Shares[t] + 30

Action: SELL
Cash[t+ 1] = Cash[t] + 30 ∗ AdjustedClose[t]

Shares[t+ 1] = Shares[t] − 30

Action: HOLD
Cash[t+ 1] = Cash[t]

Shares[t+ 1] = Shares[t]

Reward[t] = Cash[t+1]+(Shares[t+1]∗AdjustedClose[t+1])−(Cash[t]+Shares[t]∗AdjustedClose[t])

This is where the concept of expected future reward becomes critical. The immediate reward
for the agent’s move was defined as the return the next trading day, but long-term success mat-
tered too - i.e. what happens to the holdings in the future, in the days and weeks that follow.
The onus to estimate these future rewards lies on the Q-Learner.

One addition worth noting is that in some experiments, a commission and/or sell penalty were
added to these calculations. These will be discussed in the next section.

11

3.4.4 Parameters Guiding Q-Learning

In this section, we will lay out some of the key hyperparameters that guide the Reinforcement
Learning process. Some of them will be specific to the stock trading environment.

These parameters only pertain to training in the in-sample period, unless otherwise noted. The
Q-Table was treated as a static object during testing in the out-of-sample period, and was not
updated further.

Epsilon refers to the "exploration rate". It is defined as the percentage of time an agent should
take a random, non-optimal action instead of taking what it believes to be an optimal action.
Setting epsilon to a high value early is key - otherwise, the agent will pay too much attention to
the Q-Table’s initial randomization.

On the other hand, we do not want to continue taking random actions frequently once the
agent has developed a keen sense of expected rewards and has learned a good policy. For this
reason, we add an epsilon decay - an amount (between 0 and 1) that we multiply epsilon by
every trading day so it shrinks.

The Q-Learner will train for a certain number of episodes. It will not simply iterate through
the in-sample (training) period once (unless the number of episodes it set to 1). It will do this over
and over, learning progressively, with epsilon forcing random actions on different days each time
passing through the data, leading to slightly different results each time and progressive learning.

We also add a learning rate, which we call alpha: the proportional weight we put on our
updates to the Q-Table. Say our alpha is .01. If we take a certain action in a certain state, we
calculate the new value for that Q-Table cell as .99 times its existing value plus .01 times the
current expected reward. In our experiment, we keep alpha at constant value of 0.1.

Gamma is another key element in the aforementioned Bellman Equation, referring to a dis-
count factor : the proportion of the expected future return that should be added to the current
return. It is also set between 0 and 1.

In some experiments, agents were charged a fixed-price commission for each buy/sell action.
This applied in both training and testing, and was also levied upon the benchmark strategies.

Finally, in some experiments, the Q-Learning agent was charged a sell penalty if it decided
that selling was optimal when it did not have any shares to sell. The goal was to disincentivize
these "impossible" sales.

For reference, the Bellman Equation that is used to update the Q-Table in the simple Q-Learner
can be viewed below (Sebastiano).

NewQ(s, a)︸ ︷︷ ︸
New Q-Value

= Q(s, a) + α∣∣∣
New Q-Value

[R(s, a)︸ ︷︷ ︸
Reward

+ γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′) −Q(s, a)]

12

3.4.5 DQN Process

Whereas Q-Learning is a tabular method for determining the optimal action strategy, an exten-
sion of it is to leverage Neural Networks for the same. DQN was invented by Mnih et al.[11].
Neural Networks are known non-linear function approximators. They are especially beneficial
compared to a Q-learner when the number of unique states and actions becomes large, as main-
taining a huge Q-Table becomes infeasible.

In DQN, we use two different Deep Neural Networks (DNN) composed of stacked dense layers.
The choice of using two networks, both having the same network, is useful for stabilizing the
network during frequent updates. The first network, the Policy Network, is used to estimate
the Q-value for the current state s and action a: Q(s, a : θ). The second network, the Target
Network, is used to estimate the Q-values of the next state s’ and action a’. At every 10th epoch,
the weights of the policy network are copied to the target network.

4 Evaluation

4.1 Results

We begin by examining the quantitative performance of our various trading strategies, using the
metrics outlined in section 3.3.2.

Hold Buy Always Random Rule-Based OLS Q-Learner DQN
Buy % 0% 6% 36% 51% 50% 34% 33.5%
Sell % 0% 0% 31% 47% 46% 29% 33.5%
Hold % 100% 94% 33% 2% 4% 37% 33%

Sharpe Ratio +0.73 +1.25 +0.73 +0.18 +0.52 +0.6 +0.38
Information Ratio -0.34 0.9 -0.1 -1.48 -0.72 +0.31 -0.9
Mean Daily Return +.081% +.077% +.048% +.015% +.034% +.064% .029%

Mean Return Days After Buying N\A +.087% +.056% +.022% +.057% +.051% -.01%
Mean Return Days After Holding +.081% +.077% +.038% -.052% -.186% +.12% +.071%
Mean Return Days After Selling N\A N\A +.049% +.011% +.025% +.008% +.026%

Volatility .007 .012 .007 .004 .009 .01 .006
T-test (For Returns) >0.17 >0.18 >0.27 >0.44 >0.33 >0.26 >0.37

Levene Test (For Volatility) >*0.0 >*0.0 >*0.03 <*0.0 >0.62 >∗0.0 <*0.0

Figure 1: Table of trading results across strategies

We can also examine a graph of daily portfolio values, as well as daily share and cash holdings
(to examine the cash/stock splits) for each strategy.

13

Figure 2: Daily portfolio values for each strategy

Figure 3: Daily cash holdings for each strategy (the more cash, the less stock)

14

Figure 4: Daily share holdings for each strategy (the more stock, the less cash)

We glean a little more by examining heatmaps of a couple of the Q-Tables from the Q-Learner,
for the Bollinger Band % and cash held as a percentage of portfolio value states. These are
normalized by row and marginalized across all other states, meaning that the darkest value in
each row indicates the generally-most optimal action for that state.

Figure 5: Bollinger Band % Q-Table

15

Figure 6: Cash Held % Q-Table

We can also see how the Q-Learner tended to transition between states, by taking a peek at
a Markov-like transition matrix. Here, we can see a very slight propensity to stay in the same
state.

Figure 7: Transition matrix for Q-Learner (rows are action at time t-1, columns action at time t)

It is also worth noting that the team compiled a dashboard illustrating daily Buy/Hold/Sell
actions in relation to daily portfolio actions and the Bollinger Bands, a screenshot of which can
be viewed here. Please note that this Q-Learner was trained in a similar manner, but is not the
same Q-Learner from the other figures.

16

Figure 8: Preview of Interactive Dashboard

4.2 Analysis of Results

Generally, neither the Q-Learner nor DQN appears to perform better than the other strategies,
as we can see in Figure 1. This is not terribly surprising considering what we saw in our lit-
erature review, or based on common sense; considering the Efficient Market Hypothesis (which
states that prices reflect all information on a stock), it would seem somewhat farcical to expect
an algorithm based solely on price to beat simple trading strategies. Still, we can glean insight
from these results.

The Q-Learner outgained every strategy other than Buy Always (which, as mentioned earlier,
is a gold standard that is nearly impossible to surpass in this context) and Hold (which is equally
difficult to beat because it only holds stock), as evident in Figure 2. It did so with a high increase
in volatility, which is a clear downside that negatively affected its Sharpe Ratio and Information
Ratio. Even random actions led to a better Sharpe Ratio. But the returns were there, even if
they came with much volatility.

However, the Q-Learner did opt to buy more stock as we see in Figure 3 and Figure 4, which
particularly makes sense. For some reason, though, it stopped buying as it gained more stock.
This may be a sign that including the cash held amount as a state was a poor choice; perhaps the
agent needs a little more freedom to buy when it holds a high number of shares. We see promise
here; clearly, some alterations are needed, but we see the makings of a sensible strategy.

DQN was implemented towards the latter end of the project, and it seems that it would benefit
from more tuning. Based on Figure 1, it seems to show little preference for any action, and
performs worse than almost every other strategy. It appears to be highly reactive, oscillating
between holding more cash and more stock much more wildly than the other strategies. This
seems to suggest it is reacting to states attentively (which is likely a sign that the pieces are there
and the framework is good), but perhaps needs further fine-tuning.

We notice that Figure 8’s Q-Learner has a preferred repeated pattern for holding. This model
is also, in the majority of cases, buying and selling at the appropriate moments; buying when
the price is low and selling when the price is high. However, a few instances are erroneous and
more importantly there are specific instances where the model could have waited slightly longer
prior to a sell or buy action. It is important to note that the latter is generally only noticed at
unprecedented price peaks.

17

One final point we want to highlight is that minor variations to the model can create significant
shifts in action patterns and performance. One particular example we would like to expand on is
epsilon, which involved a lengthy hyperparameter tuning process. Shifting epsilon by very small
amounts made a significant impact, as did shifting epsilon decay, or even the random seeding of
epsilon, because the placement of random actions on trading days with large returns (whether
positive or negative) can drastically impact expected reward, and thus drastically impact a Q-
Table. This instability is one of the most challenging aspects of applying Reinforcement Learning
to stock trading.

5 Discussion

5.1 Summary

In short, unsurprisingly, the two stock-heavy strategies fared the best returns, but the Q-Learner
was remarkably close, and DQN showed signs of reactivity. These results were far from stellar,
but there are signs of intelligence that can be built upon.

The aim of this project was not to outperform the stock market, but to develop a framework
for an explainable artificially intelligent stock trader. The methodology and outline we have
established can set the foundation for this. The pieces of a successful strategy, "rules of the
game", and limitations of the current framework are clearly defined here; future growth of DQN
and other Reinforcement Learning strategies can stand on the shoulders of what has been done
here.

5.2 Conclusion & Take Home Messages

1. Explainability is pivotal, and visualization helps tremendously in this regard

2. Environment representation is everything - without a proper distillation of a time step’s
true state, it is difficult to make a truly optimal decision (admittedly, this will have to
involve more than just a stock price)

3. Applying RL to finance is extremely non-trivial, and even establishing a very basic frame-
work is a significant undertaking

5.3 Future Work

Our algorithms dealt with trading fixed increments of a single stock; they merely create an ex-
plainable, theoretical framework for the wider concept of using artificial intelligence to trade
stocks.

The first obvious extension of this algorithm would be to move into portfolio management:
using Reinforcement Learning to not only buy or sell a single stock, but to manage how to bal-
ance holdings in many different stocks. A couple of the ideas discussed in the group involved a
multi-agent approach (having a different agent for each stock and weighing their decisions) and
rebalancing a portfolio continuously based on the expected rewards for holding each stock.

Another critical improvement would be extending the state space to involve more states. Ad-
mittedly, the states in our current iterations of the algorithm are simple indicators, and capture
only a small dimension of a stock’s movement. One key (and very popular) area the team would
like to explore is sentiment analysis: using public chatter about a company to help predict move-
ment’s in its stock price.

18

Furthermore, a more complex and lengthy hyperparamater tuning process (perhaps paired
with greater computing power) could allow the current iteration of the algorithm to perform
significantly better, even without any changes in design. This could greatly benefit DQN, or even
the simple Q-Learner (which has no fewer than ten key parameters that could be tuned depending
on how one counts, meaning testing five different levels of each parameter in a grid search would
require nearly 10 million runs of the algorithm).

6 Social & Ethical Considerations

Due to the nature of this project and the type of data it used, social and ethical considerations
were not of particular concern. The project used entirely public data, and did not utilize any
insider information about companies to inform its decisions.

That being said, some critical concerns could arise if these algorithms were to be production-
alized and extended. Some of these were discussed earlier in the report, and we will add more
detail below.

6.1 Market Impact

One concern raised during the development of these algorithms was Market Impact. This refers
to the potential changes in the price of a stock that could occur due to our Q-Learner’s trading
activity. A good example of this is how the proliferation of High Frequency Trading has impacted
information production (Baldauf & Mollner), but Market Impact need not be that complex - it
could simply be, say, a large purchase of stock leading to an increase in the stock’s price.

Were a large financial institution to make large, sweeping trades on a daily basis depending
on this Q-Learner’s state, it could actively disrupt the price of the stock. This could alter the
price of the stock. Furthermore, this could allow another actor with awareness of the Q-Learner’s
structure to anticipate the trades, and short the stock. Q-Learning adjusts well to changes in its
environment, but it is still susceptible to this.

This caution applies to all large stock trades, not simply those driven by Reinforcement Learn-
ing. That being said, while a large financial institution would be unlikely to implement a Re-
inforcement Learning algorithm relying heavily on states simple enough for an outside actor to
guess them, it is important to avoid enacting a Q-Learner that makes large and predictable trades
for the aforementioned reasons.

6.2 Insider Trading

While this project utilized only public data, any extension of this work would have to show cau-
tion in what non-public data it might utilize. Extending the project to involve company internals,
purchased private data, or anything else non-public would need to involve protections that pre-
vent insider trading.

This could happen very easily, and perhaps even without the algorithm’s user knowing. Acquir-
ing non-public data and placing it into an automated pipeline that feeds a state could very easily
lead to inside information leaking into the algorithm (especially when it comes to something as
high-level as sentiment analysis), and this may happen under-the-hood without the user realizing
it.

For this reason, caution must be shown in selecting which non-public data might be used to
extend these Reinforcement Learning algorithms.

19

6.3 Guardrails

As with any stock trading approach, human-designed guardrails should be enacted to prevent
illegal activity (insider trading or otherwise), or activity that the company would consider uneth-
ical or reckless.

This could be as simple as preventing any trades that are prohibited by law for any reason,
limiting dealings in companies that may offer a higher expected reward but do not meet the moral
standards of JP Morgan, or limiting the amount of stock that can be invested in one company.

Granted, these concerns are unlikely to arise in the single-stock trading environment we have
researched, but they are important considerations in extensions that consider managing a portfolio
of a significant variety of stocks.

7 Contributions & Acknowledgements

Each member of the team made critical contributions to the success of this project, and these
individual inputs are noted below.

Mariem Ayadi and Shreyas Saiprasad Jadhav worked as a team to adapt and opera-
tionalize the prototype of the Q-Learner. This involved a lengthy process of state creation, state
quantilization, parameter tuning, and debugging. They served as both a first line and last line
of defense in identifying and solving algorithmic issues, and attending to the development and
performance of a robust Q-Learner. They also worked closely on the final integration of both RL
approaches into a unified code base.

Benjamin Weiss Livingston spearheaded the generation of metrics, baselines, and visual-
ization prototypes, as well as code that automatically generated all of the preceding items. He
also served as a first line of support for the two teammates developing the Q-Learner, and he
compiled the final report.

Amogh Mishra spearheaded the team’s DQN research and development, extending part of
the simple Q-Learning approach into a deep learning framework and weaving the different ap-
proaches together into a single analysis. He also built and managed the GitHub repository, and
supported the development of metrics and baselines.

Kevin Womack served as team captain, managing collaboration between the project mentors
and the team, as well as ensuring that all project deadlines were met. He also compiled the first
two progress reports, developing a framework that laid the foundation for this final report, and
he led a presentation to JP Morgan’s AI Research team.

The team would also like to extend its heartfelt appreciation to Naftali Cohen, Srijan Sood,
Thomas Spooner, and Zhen Zeng at JPMorgan, as well as Columbia University faculty advisor
Adam Kelleher. Every one of them graciously took time out of their schedules every week to serve
as enthusiastic collaborators and mentors. They offered invaluable energy, support, knowledge,
and warmth during a particularly challenging fall for research, often outside of their normal
working hours. This project owes its success to their investment.

20

References

1. Baldauf, Markus and Mollner, Joshua, High-Frequency Trading and Market Performance
(January 14, 2020).https://ssrn.com/abstract=2674767

2. Sutton, R. S., & Barto, A. (2018). Reinforcement learning: An introduction. Cam-
bridge, MA: The MIT Press. Retrieved 2020http://www.incompleteideas.net/book/
RLbook2020.pdf

3. Nguyen, T.C. (n.d.) . SARSA vs Q-Learning. Tran Canh Nguyen’ notes. Retrieved from
https://tcnguyen.github.io/reinforcement_learning/sarsa_vs_q_learning.html

4. Liu, Qian (2019). Stock Trader with Q-Learning. Medium. Retrieved from https://
medium.com/@nyxqianl/stock-trader-with-Q-Learning-91e70161762b

5. Shyalika, Chathurangi (2019). A Beginner’s Guide to Q-Learning. Towards Data Science.
Retrieved from https://towardsdatascience.com/a-beginners-guide-to-Q-Learning-c3e2a30a653c

6. Karunakaran, Dhanoop (2020). Q-Learning: a value-based reinforcement learning algo-
rithm. Medium. Retrieved from https://medium.com/intro-to-artificial-intelligence/
Q-Learning-a-value-based-reinforcement-learning-algorithm-272706d835cf

7. Meng. T and Khushi, M. Reinforcement Learning in Financial Markets (2019) https:
//www.mdpi.com/2306-5729/4/3/110

8. Ponomareva, E. S., Oseledetsa, I. V., Cichockia, A.S. Using Reinforcement Learning in the
Algorithmic Trading Problem (2019) https://arxiv.org/ftp/arxiv/papers/2002/2002.
11523.pdf

9. Tex Stack Exchange user Sebastiano (for Bellman Equation) https://tex.stackexchange.
com/questions/491915/how-can-i-properly-write-this-equation-in-latex

10. Théate, T. and Ernst, D. An Application of Deep Reinforcement Learning to Algorithmic
Trading (2004) https://arxiv.org/abs/2004.06627

11. Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." nature
518.7540 (2015): 529-533. https://www.nature.com/articles/nature14236?wm=book_
wap_0005

21

https://ssrn.com/abstract=2674767
http://www.incompleteideas.net/book/RLbook2020.pdf
http://www.incompleteideas.net/book/RLbook2020.pdf
https://tcnguyen.github.io/reinforcement_learning/sarsa_vs_q_learning.html
https://medium.com/@nyxqianl/stock-trader-with-Q-Learning-91e70161762b
https://medium.com/@nyxqianl/stock-trader-with-Q-Learning-91e70161762b
https://towardsdatascience.com/a-beginners-guide-to-Q-Learning-c3e2a30a653c
https://medium.com/intro-to-artificial-intelligence/Q-Learning-a-value-based-reinforcement-learning-algorithm-272706d835cf
https://medium.com/intro-to-artificial-intelligence/Q-Learning-a-value-based-reinforcement-learning-algorithm-272706d835cf
https://www.mdpi.com/2306-5729/4/3/110
https://www.mdpi.com/2306-5729/4/3/110
https://arxiv.org/ftp/arxiv/papers/2002/2002.11523.pdf
https://arxiv.org/ftp/arxiv/papers/2002/2002.11523.pdf
https://tex.stackexchange.com/questions/491915/how-can-i-properly-write-this-equation-in-latex
https://tex.stackexchange.com/questions/491915/how-can-i-properly-write-this-equation-in-latex
https://arxiv.org/abs/2004.06627
https://www.nature.com/articles/nature14236?wm=book_wap_0005
https://www.nature.com/articles/nature14236?wm=book_wap_0005

	Introduction
	Background & Motivation
	Reinforcement Learning
	Why Reinforcement Learning Is Ideal For An Investment Bank (JP Morgan)
	Q-Learning
	Deep Q Networks

	Problem Statement
	Existing Work & Literature Review
	Overall Approach

	Data & Processing
	Data
	Preprocessing

	Analytical Methods
	Methodology
	Benchmarks
	Metrics
	Goals of Metrics
	Metric Definitions

	Outlining the Q-Learner
	State Space
	Action Space
	Rewards
	Parameters Guiding Q-Learning
	DQN Process

	Evaluation
	Results
	Analysis of Results

	Discussion
	Summary
	Conclusion & Take Home Messages
	Future Work

	Social & Ethical Considerations
	Market Impact
	Insider Trading
	Guardrails

	Contributions & Acknowledgements

